Reactions of Trichloromethyl Anions with Diformylbenzenes. Estimation of Hammett Substituent Constants of the Formyl, Trichloroacetyl, and 2,2,2-Trichloro-1-hydroxyethyl Groups

Wasfy N. Wassef * and Nadia M. Ghobrial
University College for Women, Ain-Shams University, Heliopolis, Cairo, Egypt

Abstract

o - and p-diformylbenzenes react at room temperature with trichloroacetic acid in dimethyl sulphoxide to yield insoluble products corresponding to the addition of trichloromethyl anion to carbonyl groups. The addition of one ${ }^{-} \mathrm{CCl}_{3}$ ion to the o-isomer leads to the formation of a cyclised phthalan product. The Hammett σ_{p} constants of the groups $\mathrm{CHO}, \mathrm{CH}(\mathrm{OH}) \mathrm{CCl}_{3}$, and COCCl_{3} have been estimated as $0.40,0.32$, and 0.70 respectively.

It has recently been reported ${ }^{1.2}$ that the use of dimethyl sulphoxide (DMSO) allows a facile route for the isolation of products, derived from trichloromethyl anion, of the type $\mathrm{ArCH}(\mathrm{OH}) \mathrm{CCl}_{3}$ [reaction (1)]. Such compounds and the corresponding trichloromethyl ketones are of interest not only as potentially useful products ${ }^{3}$ with high biological activity, but also as precursors in other synthetic applications. ${ }^{4}$

$$
\mathrm{ArCHO}+{ }^{-} \mathrm{CCl}_{3} \longrightarrow \mathrm{ArCH}\left(\mathrm{CCl}_{3}\right) \mathrm{O}^{-} \xrightarrow{+\mathrm{H}^{+}}
$$

$$
\begin{equation*}
\mathrm{ArCH}\left(\mathrm{CCl}_{3}\right) \mathrm{OH} \tag{1}
\end{equation*}
$$

As part of our studies on the preparation of pesticides and herbicides of the DDT family, we have now investigated the preparation of bis(trichloroacetyl)benzenes. Our interest in this reaction is justified not only by the growing concern with pesticides and their degradation products but also by the fact that some obscure points regarding this reaction remain to be clarified.

Khcheyan et al. ${ }^{5}$ have shown that the chlorination of a mixture of m - and p - $(\mathrm{MeCO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ at $200^{\circ} \mathrm{C}$ for 15 h gave $\left(\mathrm{Cl}_{3} \mathrm{CCO}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$. They stated that it was difficult to chlorinate pure p - $(\mathrm{MeCO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ by itself, but chlorination of a mixture of isomers gave an isomeric mixture of products. ${ }^{6}$ It seemed of interest to examine the preparation of the pure para-isomer by a less drastic and less expensive method and to investigate further the reaction with the ortho-isomer.

Results and Discussion

Reaction of Trichloromethyl Anion with p-Diformylbenzene.Treatment of p-diformylbenzene (1) in DMSO with an equimolar amount of trichloroacetic acid (TCAA) for 1 h at $20^{\circ} \mathrm{C}$ led to the formation of (2) in 75% yield showed by the expected spectral and analytical properties. Addition of acetic anhydride to the reaction mixture containing (2) led to the formation of 4^{\prime}-formyl- α, α, α-trichloroacetophenone (3) after it was left at $60^{\circ} \mathrm{C}$ overnight. Compound (3) reacts easily with TCAA in DMSO at $20^{\circ} \mathrm{C}$ to give 1,4 -bis(trichloroacetyl)benzene (5) (80%), presumably through the intermediate (4) (Scheme 1).
Despite the ease of reaction with (1) and (3), trapping of trichloromethyl anion does not appear to be general for all electron-poor aldehydes. Thus compound (2) does not undergo further nucleophilic addition of trichloromethyl anion, either when additional TCAA was added to the reaction mixture containing (2) or when (2) was isolated and redissolved in DMSO with TCAA at $20^{\circ} \mathrm{C}$. When a $1: 2.2$ mixture of (1)-

(5)

Scheme 1. Reagents: i, $\mathrm{CCl}_{3} \mathrm{COOH}-\mathrm{DMSO}, 20^{\circ} \mathrm{C}$; ii, $\mathrm{Ac}_{2} \mathrm{O}$-DMSO, $60^{\circ} \mathrm{C}$

(I)

TCAA in DMSO was allowed to react at $20^{\circ} \mathrm{C}$, (2) was obtained in 50% yield along with unchanged (1). Apparently the observed decrease in the yield of (2) on increasing the TCAA molar ratio is due to the competition of solvated proton with the aldehydes for trichloromethyl anion. We have detected the formation of trichloromethane in the n.m.r. spectra of the reaction of ($\mathbf{1}$) with TCAA in 1:2 ratio.

Competition Experiments.-In order to compare the relative reactivity of the aldehydes (1)-(3) towards $\mathrm{CCl}_{3}{ }^{-}$, we calculated the Hammett σ values for the p-CHO, p $\mathrm{CH}(\mathrm{OH}) \mathrm{CCl}_{3}$, and $p-\mathrm{COCCl}_{3}$ substituents by measuring the final absorption A_{0} at 431 nm of the coloured Meisenheimer

Table. ${ }^{1} \mathrm{H}$ N.m.r. data for compound (7) ${ }^{a}$

| | δ | | $\begin{array}{c}\text { Relative } \\ \text { Proton }\end{array}$ | cis |
| :--- | :---: | :---: | :---: | :---: |\(\left.\quad \begin{array}{c}trans

integration\end{array}\right) ~\)| $J_{1,3} \mathrm{~Hz}$ |
| :---: |
| trans |

${ }^{a}$ Spectrum taken in $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{CN}$.

Scheme 2.
adduct anion (I) formed by the reaction of trinitrobenzene and TCAA in DMSO ${ }^{1}$ [reaction (2)]. In the presence of added aldehyde (which competes with TNB for trichloromethyl anion [reaction (1)] the absorbance is reduced to A which depends on the concentration of the added aldehyde [C]. The predicted linear dependence of the ratio $\left(A_{0}-A\right) / A$ upon the ratio [C]/[TNB] is obeyed. The proportionality constant r of equation (3) is effectively a measure of the reactivity of the added aldehyde. ${ }^{1}$

$$
\begin{equation*}
\left(A_{0}-A\right) / A=r[\mathrm{C}] /[\mathrm{TNB}] \tag{3}
\end{equation*}
$$

σ Values were calculated from a ($\sigma,-\log r$) correlation for a series of aromatic aldehydes with known Hammett substituent constants, ${ }^{1}$ by extrapolation. The σ values obtained for $p-\mathrm{CHO}, p-\mathrm{CH}(\mathrm{OH}) \mathrm{CCl}_{3}$, and $p-\mathrm{COCl}_{3}$ substituents are 0.40 (lit., ${ }^{7} 0.42$), 0.32 , and 0.70 , respectively. The agreement of the σ value for p - CHO with that in the literature makes it reasonable to place limits of ± 0.05 on the σ values estimated by this method. Exner ${ }^{8}$ gives values of σ_{p} for CHO of 0.43 and 0.45 , with uncertainties of 0.03 and 0.02 , respectively, so a value between 0.40 and 0.47 seems reasonable. There appear to be no value in the literature with which those for the other two groups may be compared directly. However, σ_{p} for COCF_{3} is given by Exner as 0.80 , so the slightly less positive value of 0.70 for COCCl_{3} is reasonable, since the CCl_{3} moiety will be less electronattracting than CF_{3}. In $\mathrm{CH}(\mathrm{OH}) \mathrm{CCl}_{3}$ it appears that the $\mathrm{CH}(\mathrm{OH})$ moiety contributes little; the σ_{p} value for $\mathrm{CH}_{2} \mathrm{OH}$ is given by Exner as 0.01 . This means that the observed value of 0.32 for $\mathrm{CH}(\mathrm{OH}) \mathrm{CCl}_{3}$ is due mainly to the CCl_{3} moiety. If this makes roughly the same contribution in COCCl_{3}, then we may calculate the σ_{p} value of the latter by adding together the values for CHO and $\mathrm{CH}(\mathrm{OH}) \mathrm{CCl}_{3}$. Taking the present value for CHO, this gives 0.72 ; Exner's extremes for CHO would give 0.72 . At all events the observed value of 0.70 is reasonable, both in relation to the literature and to the measurements for CHO and $\mathrm{CH}(\mathrm{OH}) \mathrm{CCl}_{3}$.

[^0]solution, at room temperature for 1 h , afforded a solid, m.p. $129-133^{\circ} \mathrm{C}$, in 90% yield. This product proved to be a cis-trans mixture of (7). This conclusion follows from the observations (i) that elemental analysis suggests a $1: 1$ addition product and (ii) that the i.r. spectrum of (7) indicates the absence of $v_{\mathrm{C}=\mathrm{O}}$ and the presence of monomeric OH ; it also shows $\mathrm{v}_{\mathrm{C}-\mathrm{o}-\mathrm{C}}$ at $1320 \mathrm{~cm}^{-1}$, which suggests a phthalan structure. ${ }^{9}$ (iii) The n.m.r. spectrum (see Table) shows the presence of (7) in a cis-trans ratio of $c a$. $1: 2$. The attribution of the ${ }^{1} \mathrm{H}$ chemical shifts (Scheme 2) was based on comparison with spectra of similar protons in $\mathrm{ArCH}(\mathrm{OH}) \mathrm{CCl}_{3}{ }^{1}$ and the spectrum of (2). The low-field absorption of $1-$ and $3-\mathrm{H}$ was assigned to the trans isomer for reasons put forward previously by Petracek et al., ${ }^{9}$ who studied corresponding 1,3-phthalan systems obtained from the reaction of o-benzoylbenzaldehyde and cyanide ion. They gave a higher coupling constant for the trans isomer. A downfield assignment and larger $J_{1,3}$ values were also attributed to trans isomers in other phthalan systems studied by Fraser et al. ${ }^{10}$ In our case the presence of the more sterically stable trans isomer in a higher proportion (2:1 from n.m.r.) confirms the trans assignment.

Experimental

I.r. spectra were recorded on a Perkin-Elmer model 398 spectrophotometer as KBr discs, u.v. spectra on a Perkin-Elmer 555 u.v. spectrophotometer, and n.m.r. spectra on a JEOL PMK 60 spectrometer with SiMe_{4} as internal standard.

2,2,2-Trichloro-1-(4-formylphenyl)ethanol (2).-Trichloroacetic acid ($2.4 \mathrm{~g}, 0.015 \mathrm{~mol}$) was added with stirring to a solution of 1,4-diformylbenzene (1) ($2.0 \mathrm{~g}, 0.015 \mathrm{~mol}$) in DMSO $\left(30 \mathrm{~cm}^{3}\right)$. After $c a .1 \mathrm{~h}$ at room temperature, the solution was poured into ice-cold water ($400 \mathrm{~cm}^{3}$). The solid product was washed with water and gently crystallised from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) to give (2) ($2.8 \mathrm{~g}, 75 \%$), m.p. $87-88^{\circ} \mathrm{C}$. Prolonged heating during crystallisation lead to partial oxidation of (2) to (3). Aldehyde (2) (Found: C, $42.8 ; \mathrm{H}, 2.8 ; \mathrm{Cl}$, 42.1. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 42.6 ; \mathrm{H}, 2.8 ; \mathrm{Cl}, 42.0 \%$) had $v_{\text {max. }}$. $3200-3500 \mathrm{br}, 1670 \mathrm{~s}$, and $810 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 10.11(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}), 7.9-7.7(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH}), 5.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, and $3.95(1 \mathrm{H}$, brs, OH).

Compounds (5) and (7) were prepared by corresponding procedures, except that (7) was crystallised from chloroform. 1-Hydroxy-3-trichloromethylphthalan (7) had m.p. $129-133^{\circ} \mathrm{C}$ (Found: C, 42.4; H, 2.9; Cl, 41.85. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 42.6$; $\mathrm{H}, 2.8 ; \mathrm{Cl}, 42.0 \%$); $v_{\text {max }} 3420 \mathrm{sh}$ and $1032(\mathrm{C}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1}$ (for ${ }^{1} \mathrm{H}$ n.m.r. data see Table).

1,4-Bis(trichloroacetyl)benzene had m.p. $160-161^{\circ} \mathrm{C}$ (lit., ${ }^{5}$ $151-153{ }^{\circ} \mathrm{C}$) (Found: C, 32.4; $\mathrm{H}, 1.0 ; \mathrm{Cl}, 57.5 . \mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Cl}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 32.5 ; \mathrm{H}, 1.1 ; \mathrm{Cl}, 57.7 \%$); $v_{\text {max. }} 1705 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO) $8.4-8.2$ (m, ArH).

4-Formyl- α, α, α-trichloroacetophenone (3).-Acetic anhydride $(5 \mathrm{ml})$ was added to a hot solution of (2) $(2 \mathrm{~g}, 0.008 \mathrm{~mol})$ in DMSO and left overnight at $60^{\circ} \mathrm{C}$. The solution was then poured into ice-water. An oil separated which solidified on standing. Crystallisation of the solid product from n-heptane gave compound (3) $\left(70 \%\right.$), m.p. 105- $106^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 42.35 ; \mathrm{H}$, $2.05 ; \mathrm{Cl}, 42.5 . \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 42.9 ; \mathrm{H}, 2.0 ; \mathrm{Cl}, 42.35 \%$); $v_{\text {max. }} 1690 \mathrm{~s}$ and $810 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 10.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ and $8.2-8.1(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH})$.

Acknowledgements

We thank Professor W. I. Awad for valuable comments. Financial support from the Royal Society of Chemistry to W. N. W. is gratefully acknowledged.

References

1 P. J. Atkins, V. Gold, and W. N. Wassef, J. Chem. Soc., Perkin Trans. 2, 1984, 1247.
2 V. Gold, G. J. Johnston, and W. N. Wassef, J. Chem. Soc., Perkin Trans. 2, i986, 471.
3 See for example, S. Nagai, A. Sekioka, M. Sakada, Y. Kawaguchi, S. Takamura, Y. Oda, S. Yadorigi, and M. Nishimura, Jpn. Kokai 7779,026/1977 (Chem. Abstr., 1978, 88, 17,323x); H. F. Leng, H. A. Zhon, J. H. Hu, C. L. Qiao, J. L. Lu, and P. Zhu, K'un Ch'ung Hsueh Pao, 1981, 24, 121 (Chem. Abstr., 1981, 95, 12,734p); F. Sauter, O. Eberle, B. Suess, and R. Weissgerber, Ger. P. 2. 2,659,117/1978 (Chem. Abstr., 1978, 89, 163,418u).
4 W. Reeve, Synthesis, 1971, 131.
5 Scientific Research Institute of Synthetic Alcohols and Organic Products, Fr. P. 1,402,215/1965 (Chem. Abstr., 1965, 63, 9877b); Kh.
E. Khcheyan, A. E. Ioffe, and D. S. Azbel, Ger. P. 1,204,649/1965 (Chem. Abstr., 1966, 64, 8091d).
6 Kh. E. Khcheyan, A. E. Ioff, and N. E. Mak, Khim. Prom. (Moscow), 1973, 49, 807 (Chem. Abstr., 1974, 80, 47599u).
7 R. A. Y. Jones, 'Physical and Mechanistic Organic Chemistry,' Cambridge University Press, Cambridge, London, New York, and Sydney, 1984, 2nd edn.
8 O. Exner in N. B. Chapman and J. Shorter, 'Correlation Analysis in Chemistry: Recent Advances,' Plenum, New York, 1978, ch. 10.
9 F. J. Petracek, N. Sugisaka, M. W. Klohs, R. G. Parker, J. Bordner, and J. D. Roberts, Tetrahedron Lett., 1970, 707; R. A. Smith, R. G. Parker, and J. D. Roberts, ibid., p. 1763.
10 R. R. Fraser and R. N. Renaud, Can. J. Chem., 1971, 49, 755, 800.
Received 29th March 1988; Paper 8/01304

[^0]: Reaction of Trichloromethyl Anion with o-Diformylbenzene.The reaction of o-diformylbenzene (6) and TCAA in DMSO

